Saturday, July 13, 2024

Saturday, June 15, 2024

Ben jij muzikaal? [Dutch]

Hoe snel herken jij een liedje? Heb je een goed maatgevoel? Hoe goed is jouw absoluut gehoor? Doe de testjes op ToontjeHogerKids en ontdek meer over je eigen muzikaliteit én wat de wetenschap daarover weet.



Wednesday, June 12, 2024

Why do humans sing? |ヒトはなぜ歌うのか

Below a trailer of a Japanese documentary on the origins of musicality, made by NHK, entitled Why do humans sing?  (ヒトはなぜ歌うのか ).

The one hour documentary presents cross-species and cross-cultural research on musicality, realized and filmed in Amsterdam, Inuyama, Boston and the rainforest of Central Africa.

For more information see NHK | Frontiers.

Thursday, April 04, 2024

A musical ape?

Music is universal in all human cultures, but why? What gives us the ability to hear sound as music? Are we the only musical species–or was Darwin right when he said every animal with a backbone should be able to perceive, if not enjoy music? 

This episode was written and produced by Ray Pang and Meredith Johnson. Sound design, mixing, and scoring by Ray Pang. The editor is Audrey Quinn. Theme music by Henry Nagle, additional music by Blue Dot Sessions and Lee Roservere. 

Listen to the podcast here.

Saturday, March 16, 2024

Interested in the origins of musicality?

Next week prof. Aniruddh D. Patel will visit the Netherlands to discuss his work on the origins and evolution of musicality, with a public talk at the MPI Colloquium Series in Nijmegen on Tuesday 19 March 2024 and a scientific (invitation-only) workshop on Friday 22 March 2024 in Amsterdam. 

N.B. The public talk can be viewed via MPI's live stream.

Saturday, March 09, 2024

Heb jij ritmegevoel? [Dutch]

Videopodcast van de Universiteit van Nedererland: 

"Ritmegevoel, je denkt misschien dat je het niet hebt. Maar er is wereldwijd maar bij 6 mensen vastgesteld dat ze het verschil tussen ritmes écht niet kunnen horen. Je hebt dus wel degelijk ritmegevoel. Sterker nog... uit het onderzoek van Henkjan Honing (onderzoeker muziekcognitie aan de Universiteit van Amsterdam) blijkt dat dit niet alleen is aangeleerd, maar aangeboren. Zelfs baby's van een paar dagen oud hebben het door als je iets aan de regelmaat van muziek verandert. En ook sommige apen gaan spontaan bewegen op muziek. Hoe Henkjan hierachter kwam, en waarom we überhaupt ritmegevoel hebben, leer je in deze video."

Meer lezen? Hieronder enkele van de studies die genoemd worden in de video:

 

Sunday, December 31, 2023

Feel like a musical memory challenge?

[Blog by Jiaxin Li on TeleTunes]

Think about your favorite TV show. Can you hear the theme music already starting to play in your mind? Maybe it’s the epic sounding strings from Game of Thrones or the punchy synthesizer from Seinfeld? You’ve probably heard the music from that show so many times it’s now encrypted in your memory. As music cognition researchers, we are eager to find out what makes some TV tunes more memorable than the others.

The TeleTunes game is designed for exactly this reason. It is a game that allows us to study the catchiness of TV themes. Unlike the Christmas or Eurovision versions of our Hooked-on Music game series, this game invites you to test your memory with clips from the most iconic TV themes, curated from IMDB’s 100 most watched shows and The Rolling Stone’s esteemed “Greatest” TV show lists spanning the past 40 years. Your challenge? If you recognise a tune, quickly click the button, sing along in your mind and judge whether after a few seconds it continues in the right spot.

Through engaging in this game, you are contributing to music science, enriching our understanding of musical memory. By investigating the familiarity of these TV tunes, we are building a corpus consisting of well-known music. In the near future, we will use the results for yet another game – TuneTwins – continuing our quest to investigate questions like “what makes music memorable” or even “how do we as human beings remember music”.

We hope you will enjoy this game. Each game takes only a few minutes, and you can play it as many times as you like. Listen carefully! The fewer mistake you make, the more points you’ll earn! Finally, feel free to share the link with your friends and family and see who can get the highest score. The more you play, the more you contribute to science! 

TeleTunes can be found at: https://app.amsterdammusiclab.nl/teletunes.

Thursday, December 21, 2023

Interested in a one-year postdoc position?

MCG, November 2023

We are looking for a postdoc researcher that likes to work on the intersection of music cognition, psychometrics, and the cognitive sciences. If you are excited about doing this kind of research in an interdisciplinary environment, with a team of smart and friendly colleagues, then you may want to join us. 

More information, including details on how to apply, can be found at the UvA website.

Deadline for applications : 15 January 2024.

Sunday, December 10, 2023

Why did we decide to revisit and overhaul our earlier beat perception studies?

Newborn baby participating in listening experiment
(courtesy Eszter Rozgonyiné Lányi).

[Published in Scientific American and MIT Press Reader]

In 2009, we found that newborns possess the ability to discern a regular pulse – the beat – in music. It’s a skill that might seem trivial to most of us but that’s fundamental to the creation and appreciation of music. The discovery sparked a profound curiosity in me, leading to an exploration of the biological underpinnings of our innate capacity for music, commonly referred to as “musicality.”

In a nutshell, the experiment involved playing drum rhythms, occasionally omitting a beat, and observing the newborns’ responses. Astonishingly, these tiny participants displayed an anticipation of the missing beat, as their brains exhibited a distinct spike, signaling a violation of their expectations when a note was omitted. This discovery not only unveiled the musical prowess of newborns but also helped lay the foundation for a burgeoning field dedicated to studying the origins of musicality.

Yet, as with any discovery, skepticism emerged (as it should). Some colleagues challenged our interpretation of the results, suggesting alternate explanations rooted in the acoustic nature of the stimuli we employed. Others argued that the observed reactions were a result of statistical learning, questioning the validity of beat perception being a separate mechanism essential to our musical capacity. Infants actively engage in statistical learning as they acquire a new language, enabling them to grasp elements such as word order and common accent structures in their native language. Why would music perception be any different?

To address these challenges, in 2015, our group decided to revisit and overhaul our earlier beat perception study, expanding its scope, method and scale, and, once more, decided to include, next to newborns, adults (musicians and non-musicians) and macaque monkeys.

 [...] Continue reading in The MIT Press Reader.

Monday, November 27, 2023

Do babies have a natural affinity for ‘the beat’ ?

Newborn baby participating in listening experiment
(courtesy Eszter Rozgonyiné Lányi).
Today a new study, carried out by a team of scientists from the University of Amsterdam and the HUN-REN Research Centre for Natural Sciences (TTK) in Hungary, shows that the ability to recognize a beat is not simply due to the statistical learning ability of newborns, but that beat perception is actually a separate cognitive mechanism that is already active at birth. The study was published in the scientific journal Cognition.

‘There is still a lot we don't know about how newborn babies perceive, remember and process music,’ says author Henkjan Honing, professor of Music Cognition at the UvA. 'But, in 2009, we found clear indications that babies of just a few days old have the ability to hear a regular pulse in music – the beat – a characteristic that is considered essential for making and appreciating music.’

27 babies
Because the previous research from Honing and his colleagues had so far remained unreplicated and they still had many questions, the UvA and TTK joined forces once again – this time using a new paradigm. In an experiment with 27 newborn babies, researchers manipulated the timing of drum rhythms to see whether babies make a distinction between learning the order of sounds in a drum rhythm (statistical learning) and being able to recognize a beat (beat-induction).

Manipulated timing
The babies were presented with two versions of one drum rhythm through headphones. In the first version, the timing was isochronous: the distance between the sounds was always the same. This allows you to hear a pulse or beat in the rhythm. In the other version, the same drum pattern was presented, but with random timing (jittered). As a result, beat perception was not possible, but the sequence of sounds could be learned. This allowed the researchers to distinguish between beat perception and statistical learning.

Because behavioral responses in newborn babies cannot be observed, the research was done with brain wave measurements (EEG) while the babies were sleeping. This way, the researchers were able to view the brain responses of the babies. These responses showed that the babies heard the beat when the time interval between the beats was always the same. But when the researchers played the same pattern at irregular time intervals, the babies didn't hear a beat.

Not a trivial skill
‘This crucial difference confirms that being able to hear the beat is innate and not simply the result of learned sound sequences,’ said co-author István Winkler, professor at the Institute of Cognitive Neuroscience and Psychology at TTK. 'Our findings suggest that it is a specific skill of newborns and make clear how important baby and nursery rhymes are for the auditory development of young children. More insight into early perception is of great importance for learning more about infant cognition and the role that musical skills may play in early development.'

Honing adds: 'Most people can easily pick up the beat in music and judge whether the music is getting faster or slower – it seems like an inconsequential skill. However, since perceiving regularity in music is what allows us to dance and make music together, it is not a trivial phenomenon. In fact, beat perception can be considered a fundamental human trait that must have played a crucial role in the evolution of our capacity for music.’

Publication details
Gábor P. Háden, Fleur L. Bouwer, Henkjan Honing and István Winkler. Beat processing in newborn infants cannot be explained by statistical learning based on transition probabilities, Cognition, DOI
10.1016/j.cognition.2023.105670.

 [Source UvA Press Office: English version; Dutch version.]