Tuesday, October 14, 2014

What do we share with other primates in terms of cognition?

Below a beautiful summary of the recent literature on the neurobiology of action imitation/understanding, language, and rhythmic processing/auditory timing (Mendoza & Merchant, in press). The neural circuitry that is thought to be involved in all three higher cognitive functions is shown here for three closely related primates: the macaque monkey, chimpanzee and human brain.

Schematic representation of the neural circuits for action imitation/understanding, language, and rhythmic processing in three closely related primates. Upper, middle and lower panels adapted from Hecht et al. (2013a), Rilling et al. (2008) and Merchant and Honing (2014), respectively.
(In turn, adapted from Mendoza & Merchant, in press.)

For me, and several other researchers in the field of rhythm cognition, the bottom panel is the most intriguing. It addresses the question in how far we share rhythm cognition with other primates.

Quite a few papers on this topic came out recently (I cite a small selection below). One of the teasing questions is the absence/presence of a bidirectional link between IPL (inferior parietal lobe) and MPC (medial premotor cortex), a link that quite a few researchers suspect is crucial to regularity detection or rhythmic entrainment in sound and music, and arguably should be considered a basic building block of musicality.

ResearchBlogging.orgAckermann, H., et al. (2014, in press). Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective. Behavioral and Brain Science.

ResearchBlogging.orgHoning, H., & Merchant, H. (2014, in press). Differences in auditory timing between human and non-human primates. Behavioral and Brain Science.

ResearchBlogging.org Mendoza, G., Merchant, H. (2014). Motor system evolution and the emergence of high cognitive functions Progress in Neurobiology DOI: 10.1016/j.pneurobio.2014.09.001
 
ResearchBlogging.orgMerchant, H., & Honing, H. (2014; online). Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 7 (274) 1-8. doi 10.3389/fnins.2013.00274

 ResearchBlogging.orgPatel, A., & Iversen, J. (2014). The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis Frontiers in Systems Neuroscience, 8 DOI: 10.3389/fnsys.2014.00057

Thursday, October 09, 2014

Can you do better?

When I played the #HookedOnMusic game the other day, I recognized 10 songs (from the nineties) and scored 90 points. Most of you must be able to do better :-)

Play the game here.

Waarom wordt muziek mooier als je het vaker hoort? [Dutch]



Zie voor de volledige uitzending hier.

 ResearchBlogging.org Margulis, L. (2013). On Repeat: How Music Plays the Mind. Oxford: Oxford Universty Press.