Tuesday, December 24, 2019

Empirical support for the GAE hypothesis?

Yesterday PNAS published a study by Yuko Hattori and colleagues entitled Rhythmic swaying induced by sound in chimpanzees. The study presents further support for the GAE-Hypothesis (see a detailed description in The Evolving Animal Orchestra, 2019, MIT Press, Chapters 4 and 5):
"Rereading and reinterpreting the recent literature culminated in the formulation of what we called the “gradual audiomotor evolution (GAE)” hypothesis. Admittedly, it is not the most inspired name, but we based our hypothesis on the existing neurobiological literature, which suggests that the neural networks that enable beat perception in humans are absent or less developed in rhesus macaques (figure 4.1). In humans, this network connects the auditory system (hearing) with the motor system, which controls the movements of our limbs and mouth, such as clapping, dancing, or singing. Even if you leave test subjects lying motionless in a functional magnetic resonance imaging (fMRI) scanner and let them listen to metrical and nonmetrical rhythms, activity is still visible in the motor cortex as a result of the metrical, beat-inducing rhythms. Clearly, an information exchange takes place between the auditory and motor systems.
The absence of a strong connection between the auditory cortex and the motor cortex in most nonhuman primates may well be the reason why humans do and other nonhuman primates do not (or only to a lesser degree) have beat perception. We also proposed that this connection would likely be present in rudimentary form in chimpanzees, and therefore that chimpanzees would probably have beat perception in an embryonic form. If what we proposed was true, then we could date the origin of beat perception in primates to the time of the common ancestor of chimpanzees and humans, some five to ten million years ago. No study could be found to support this part of the hypothesis. It was therefore purely speculative."
Thanks to Yuko Hattori this idea is now much less of a speculation. Thanks for all the hard work!

See also, Science Magazine, The Guardian and NRC:





Hattori, Y., Tomonaga, M. (2019) Rhythmic swaying induced by sound in chimpanzees (Pan troglodytes). PNAS. doi: 10.1073/pnas.1910318116.

Honing, H., & Merchant, H. (2014). Differences in auditory timing between human and non-human primates. Behavioral and Brain Sciences, 27(6), 557-558 DOI: 10.1017/S0140525X13004056. [Alternative link: http://www.mcg.uva.nl/papers/Honing-Merchant-2014.pdf ]

Friday, December 20, 2019

动物能“听懂”音乐吗?[Chinese]

[Text as published in Nautilus and adapted from The Evolving Animal Orchestra: In Search of What Makes Us Musical (2019, the MIT Press). Chinese version by Levitan; text correction courtesy of Zhi-Yuan Ning (Leiden University).]

利维坦按:我观察了多次,不论播放摇滚乐还是钢琴曲,家里的三只猫明显是毫无反应的,也就是说,基本等于没有听到任何声音的那种状态。于是我很好奇,猫明显是听到了某种“声响”,但这种响动对于它们而言究竟意味着什么呢?

本文基于创作共同协议(BY-NC),由antusen在利维坦发布

文章仅为作者观点,未必代表利维坦立场

我们与生俱来的自发发育的音乐倾向能通过听音乐而被巩固下来。几乎人人都有体验、鉴赏音乐所必需的音乐能力。“相对音感”能力使我们能借助音高或节奏辨认出旋律;“节拍感知”能力使我们得以在千变万化的节奏中找到规律。甚至婴儿对身边的声调、旋律、节奏或动态噪声都异常敏感。所有迹象都表明,人早在诞生之初就做好了感知与享受音乐的生物学准备。
人类的乐感显然是不寻常的。乐感基于且受限于我们的认知能力(注意力、记忆力、预见力)及禀性(生物学意义的),是自发形成的一系列自然特征。但它为何如此特别呢?是因为人类有可能是唯一具备所有这些音乐本领的物种吗?或是因为这些对音乐的倾向也像语言能力那样为人类所独有呢?亦或乐感原本就是人类与其它物种共享的自然进化产物? 《我和狗狗一起弹钢琴》: [link]

研究音乐的亨詹·霍尼(Henkjan Honing)怀疑这个广为流传的视频里的狗狗并没有音高辨别力(一种听力以外的知觉能力),它只能利用主人目光所指示的线索来找到正确的琴键。 达尔文认为所有的脊椎动物应该都能感知、欣赏节奏与旋律,仅仅是基于它们相似的神经系统。他确信人类的乐感是有生物学基础的。此外,他还认为,音乐敏感性肯定是一种非常古老的特质,比语言敏感性还要古老许多。事实上,他认为音乐与语言都起源于乐感,并将其在人类和其它动物中的由来归因于性选择的演化机制。。

那么和人类相比,动物的乐感好到什么程度呢?乐感是人类独有的吗?亦或如达尔文所推测的那样,(人类和动物)“神经系统的生理特性相同”,因而都具有乐感?想了解音乐与乐感的演化过程,我们必须先确定音乐的组成部分是什么,及它们如何在动物和人类身上体现出来。或许我们能借此判断是否只有人类才有乐感。

20世纪初,伊万·巴甫洛夫(Ivan Pavlov)发现,狗能记住某个单音调并将其与食物联系起来。狼、老鼠、椋鸟和恒河猴都能通过叫声的绝对音高识别同类,并能辨别音调。 然而相对音感是一种更具音乐性的听音能力。大多数人听的是整首旋律,而不是专注于一段旋律里的个别音调及其频率。无论对方用高音还是低音唱《玛丽有只小羊羔》,你都能听出那首歌。即便在嘈杂的咖啡馆里听到扩音器里传出的曲调,你仍然能够立即辨认出是哪首歌。
但这是谁唱的呢?你绞尽脑汁想记起歌手的名字或歌曲的名字,然而大脑却一片空白,于是你打开听歌识曲软件,把智能手机对着扬声器,几秒钟内就找到了歌名、歌手和所属专辑。 “存在一种听音模式使得音色这一要素在现代作曲家的作品中占有重要的地位的,鸣禽也具备。”

为了使听音识曲成为可能,软件开发者系统分析并高效保存了大部分可商用的歌曲录音。每首歌都有可以体现其特定声音品质的独特“声学指纹”,这些指纹被储藏在存量浩大的档案中。计算机程序会比对智能手机所接收音乐与存档音乐的“指纹”,进而快速有效地听音识曲。对计算机而言,这简直是小菜一碟,但对人类来说,这几乎是不可能的任务。

然而,如果把智能手机靠向正在唱同一首歌的人,软件要么会表示自己无法识别,要么会乱猜一通。因为数据库中只有有限的经过分析的音乐版本,没有这种随意唱出的音乐,所以软件无法找到对应的“指纹”。而在这种情况下,人类却能立即识别出歌曲,那首歌甚至可能会在他们的脑海中循环播放好几天。

也就是说,计算机会惊讶地发现,无论演唱者音调是高是低,节奏是快是慢,跑调还是不跑调,人类只需要听半首歌就能识别出歌手或歌曲。毕竟对人类而言,听音乐的乐趣之一正是源于聆听音调之间的结构性(包括旋律性和谐和性)。

长期以来,科学家一直认为鸣禽拥有绝对音高辨别力,能根据音高或基频识别并记住旋律。40多年前,美国鸟类研究学者斯图尔特·赫尔斯(Stewart Hulse)以欧洲椋鸟为研究对象,进行了一系列听音实验,进而得出了这一结论。他指出,椋鸟能区分出逐渐升高或降低的音调序列,但却识别不了振动频率略升高或降低的音调序列。赫尔斯的结论是,鸟类关注的是绝对频率。和多数哺乳动物一样,欧洲椋鸟拥有绝对音高辨别力,而非相对音高辨别力。
谈及相对音高辨别力,或者说识别移调乐曲的能力,以人类为观察对象的研究已经比较深入了。神经科学研究表明,使用相对音高辨别力时,需要调用由不同神经机制构成的复杂网络,其中包括听觉与顶叶皮层之间交互作用的神经网络。而鸣禽似乎没有这类神经网络,鉴于此点,当我们研究人类乐感的生物学起源时,其他动物是否也拥有相对音高辨别力这个问题就更加令人着迷了。

据我们目前所知,大多数动物没有相对音高辨别力。人类似乎是个例外。但有人可能会猜测相对音高辨别力是否仅与音高相关。也许乐感并非源于声音的那些绝对物理特征,而是源于这些物理特征之间的结构性关系。

2016年,加州大学圣地亚哥分校的研究人员提供了解答这一问题的方向。他们让椋鸟听了音色、音高都经过处理的不同旋律。使用了俗称音色旋律的刺激物——由不同音色的音调组成的音调序列。他们通过一系列声学实验研究了鸟类是如何利用声学特征对从没接触过的陌生旋律进行归类的。 “鱼能够分辨出约翰·李·胡克(John Lee Hooker)和约翰·塞巴斯蒂安·巴赫(Johann Sebastian Bach)的作品。”

令人惊讶的是,研究人员发现椋鸟并不像预料的那样借助音高来区分刺激物,它们借助的是音色本身及其变化(声谱包络)。即便某首特定的歌曲经过“噪音声码”技术处理后,其中所有音高信息已被去除了,鸟类仍会对这首歌做出反应。由此“噪音声码”技术处理过的音色旋律,其音符切换时缺乏可察觉的音高信息,听起来类似嘈杂之音。就如赫尔斯以欧洲椋鸟为研究对象的实验(使用的刺激物由缺少频谱信息的纯音组成),鸣禽只有在可用的频谱信息极少时才会关注刺激物的音高信息。

鸣禽主要靠频谱信息及其随时间的变化,更确切地说,靠音符切换时频谱能量的变化来感知旋律。而人类关注的是音高,基本不会注意音色。
可以说,鸣禽听旋律的方式就像人类听语音一样。听语音时,人类主要关注的是频谱信息,这让我们能够区分单词“bath”和“bed”。在乐曲中,旋律和节奏是需要关注的重点。就说话而言,音高是次要的——它可以表明说话者的身份或话语的情感意义,但谈及音乐,它便成了首要因素。这就是音乐听觉体验与语音听觉体验之间一个奇异而有趣的区别,只不过目前还难以被人们所理解。

一种可能的解释认为乐感是大脑皮层的副产品,即大脑皮层为语言而生,并且受音乐超常地刺激。然而反过来解释也是有可能的,即乐感先于语言和音乐而存在。根据这种观点,乐感可被解读为人类及许多非人类物种所共有的禀性,只不过在人类身上,这种禀性已演化成为部分地重合的两个认知系统:音乐与语言。

2014年,在奥地利召开的一场国际会议上,笔者偶然发现了支持这一观点的实验证据。在某次讲座中,维也纳大学(University of Vienna)的博士后研究员米歇尔·施皮林斯(Michelle Spierings)曾揭示过斑胸草雀(zebra finches)识别声音序列(她称之为音节)差异的学习过程。这些声音由“mo”、“ca”、“pu”等人类的话语组成。在不同的行为实验中系统地调整这些语音的序列(句法)、音调、音延及动态范围(声谱包络)。

斑胸草雀得先学会区分Xyxy和xxyY序列,其中x和y代表不同的语音,大写字母代表乐调重音:即更高、更长或音量更大的音节。举个例子:“MO-ca-mo-ca”不同于“mo-mo-ca-CA”。 然后,斑胸草雀会听见一段重音、结构都有所变化的陌生序列。该测试目的在于确定鸟类是用乐调重音还是音节顺序来区分语音差异的。

如米歇尔所示,人类主要基于音节顺序来区分差异:譬如abab与aabb不同,而cdcd与abab相似。人类会将abab结构顺序“归纳化”,并推演到尚未听到的cdcd序列。这表明人类听到语音序列时,主要关注的是句法或音节顺序。而句法(一种语序,如“人咬狗”)正是语言的一个重要特征。

相比之下,斑胸草雀主要把注意力放在序列的音乐特质之上,但这并不意味着它们对语序不敏感(其实在某种程度上,它们能理解语序),只不过它们主要靠音高(语调)、时长和力重音(音韵)来区分语音序列。

如果没有解读错的话,研究结果将表明人类的听音模式可能与斑胸草雀一样,这种听音模式关注的是声音的音乐特质(音韵),而非倾听话语时密切关注的句法与语义。 笔者又想起了达尔文。人类和斑胸草雀的听音过程是否密切相关?

针对椋鸟和斑胸草雀的研究表明,鸣禽会收集利用全声谱的信息。它们具有相对音感,基于音色轮廓曲线、语调及声音的动态范围听音。这种音乐理论家早就有所察觉的听音模式已使埃德加·瓦雷兹(Edgard Varèse)、 捷尔吉·利盖蒂(György Ligeti)、卡佳·萨丽亚诺(Kaija Saariaho)等现代作曲家,在他们的作品中尤为着重音色的表现力。

有相对音高辨别力的人不仅仅能听出音高之间的关系。即便面对音高无法辨认的熟识旋律,他们也能借助这声音其他方面的轮廓特征(声谱包络)将其辨认出来。但人们对声谱包络不怎么感兴趣。 一个有趣的问题由此产生:人类需要什么样的特质才能像鸣禽一样听音?或者,反过来说,鸣禽有可能像人类那样听音乐吗? 人类和鸣禽听音时都有自己的策略和偏好。笔者研究斑胸草雀时,发现韵律结构并非此鸟最关注的因素。有证据表明,斑胸草雀最关注语调、音色和动态变化,最不关注声音的时序特征。事实上,对斑胸草雀而言,与歌曲音节间的时序结构相比,韵律蕴含的信息可能更多。

针对斑胸草雀的研究结果迫使笔者意识到,对人类显而易见的东西,对动物却未必如此。当我们不由自主被节奏中的规律性吸引时,斑胸草雀似乎更关注“局部”,如单音或时程。这很好地诠释了美国心理学家詹姆斯·吉布森(James J. Gibson)(也是我最喜欢的)一句妙语:“事可知,而时不可” (“Events are perceivable but time is not”)。只有事件发生时,才能感知时间。在斑胸草雀的例子中,这种“事件”似乎是被它们赋予某些特定特征的单个声音,而非声音序列的时序结构(声音序列承前启后所形成的节奏)。

从这个意义上说,人类的听音模式更具全局性与抽象性,更关注整体。我们过于擅长观察与聆听“结构性”,虽说这些“结构性”通常源于个人经验与预见,而并非真实地存在。这就是为什么我们会惊讶于,其他动物似乎用比人类复杂许多的方式来解决问题。不过,我们眼中最简单的解决方案(结构性)并不总是动物眼中最简单的解决方案(细节性)。

举个出人意料却轻而易举解决视觉领域难题的事例:我们要开发一个搜索算法以便在互联网上找到飞机照片。这是一项艰巨的任务,因为所摄物体(比如鸟、蓝色背景下的白色或金属物体)与飞机某些特征相符的照片数不胜数。

经典的人工智能方案会这样解决问题:创建一个知识导向型系统,该系统可将飞机的典型特征编成的精确规则(可由计算机解释)。这个特征清单可以很长:细长的对称物体、两个机翼、一个机头和一个机尾、两边的小窗户、机头或机尾上的螺旋桨等。编写一份涵盖所有飞机特征的清单虽不容易,但却能将飞机和鸟类及类似飞机的物体区分开。 “如果把智能手机靠向正在唱同一首歌的人,软件无法识别对方在唱什么。”

最新的计算机模拟系统强有力地证明,知识导向型的系统不是判断照片中是否有飞机的最有效方法。所有复杂的推理都是多余的。是否有飞机只需简单关注一个细节:照片中是否有前轮? 常被用于归类实验的斑胸草雀和其它实验动物或许也可以做到这一点。或者说,其实它们倾听的是音乐的“前轮”:与音乐本质无关的某个细节。鸟能记住并辨认出某个独特的细节,这个细节通常是鸟类觅食的有效线索,进而让鸟有必要继续专注于它。

可以肯定的是,人类、鸣禽、鸽子、老鼠和某些鱼(如金鱼和鲤鱼)可以轻易分辨出不同的旋律。但仍然存疑的是,它们在辨别旋律时是否像人类那样利用了音乐的结构性特征。 在北美,某项针对锦鲤(类似金鱼的鱼,听力比大多数鱼好)的研究提供了一个不同寻常的例子。因为听力好,锦鲤常被叫作“听力专家”。它们的听觉灵敏到仿若在通过电话线收听声音:虽然大部分声音高频段及低频段的音质可能比较差,但在它们听起来仍非常的清晰。

三条锦鲤——小美女(Beauty)、奥罗(Oro)和佩皮(Pepi)——生活在哈佛大学罗兰研究所的水族馆内,它们在那里参加过各种各样的听力实验。在早期实验里,它们就已知道按下水箱底部的按钮就会得到食物,但前提是要同时听见音乐。目前,实验主要在研究鲤鱼的音乐识别能力。研究人员不仅会教它们区分两首音乐(辨别能力),还会观察它们是否能识别出不熟悉的音乐是否与某首乐曲类似(归类能力)。

进行辨别实验时,研究人员会播放约翰·塞巴斯蒂安·巴赫和蓝调歌手约翰·李·胡克的作品,并观察锦鲤能否加以区分。在分类实验中,研究人员会测试锦鲤是否能将某乐曲归类为蓝调或古典风格。在后一种实验中,锦鲤会交替聆听到不同蓝调歌手及古典作曲家的作品,从维瓦尔第(Vivaldi)到舒伯特(Schubert)应有尽有。

实验的结果令人惊讶,这三只锦鲤不仅能区分约翰·李·胡克和巴赫的作品,还能区分蓝调及一般古典音乐流派。这些鱼似乎能依据先前学到的音乐区别,正确归类一首从未听过的新乐曲。 但锦鲤这种乐曲归类决策的生物学基础是什么?为何它们能区分乐曲?它们到底听到了什么?研究表明,锦鲤并不是根据乐曲的音色来加以区分的,即便用同一乐器的不同音色演奏古典和蓝调旋律,锦鲤仍然能够做出区分。

锦鲤实验的灵感来自于1984年一项针对岩鸽音乐辨别能力的研究。事实证明,岩鸽也能区分巴赫和斯特拉文斯基(Stravinsky)的作品。而且,和锦鲤一样,岩鸽也能把从两首乐曲中学到的东西应用到其他不熟悉的曲子上。它们甚至能区分与巴赫及斯特拉文斯基同时代之人的作品。

岩鸽和锦鲤能做某些对普通人类听众而言相当困难的事:判断一段音乐是巴赫时代(18世纪)的作品,还是斯特拉文斯基时代(20世纪)的作品。它们无需积累听音经验,无需大量收集音乐,无需定期听音乐会就能做到这点。笔者怀疑它们是靠某个独特的细节(在本质上是一种不寻常的特征)区分乐曲。这个细节很可能有助于它们成功获取食物。然而,我们仍无法借此深入了解音乐“若非享受,则为感知”的内涵。这或许是独属于人类的乐感的某方面表现。

有关作者:亨詹·霍尼是阿姆斯特丹大学音乐认知学教授,著有《进化中的动物管弦乐队:探索是什么让我们拥有乐感及音乐认知学:听音科学》(The Evolving Animal Orchestra: In Search of What Makes Us Musical and Musical Cognition: A Science of Listening)。

Sunday, December 08, 2019

Sind Tiere musikalisch? [German]


Rezensionsnotiz zu Frankfurter Allgemeine Zeitung, 07.12.2019:

"Rezensentin Melanie Wald-Fuhrmann findet Henkjan Honings Wissensdrang ansteckend [..] ein sehr gelungenes Beispiel für Wissenschaftskommunikation." (from: Perlentaucher.)

"Das Buch ist ein ausnehmend geglücktes Beispiel für das, was gerade wieder als Wissenschaftskommunikation von der Politik angemahnt wird: Geschrieben von einem genuin wissbegierigen und dabei vollkommen uneitlen Forscher, blendet es nicht einfach mit spektakulären Ergebnissen, sondern macht – empirische – Wissenschaft als Prozess und als gemeinsame Anstrengung eines Kollektivs erfahrbar. Es zeigt, wie Beobachtung, Theoriebildung, Überprüfung und Ergebnisinterpretation aufeinander aufbauen, wie viel Ehrlichkeit mit sich selbst, Geduld, Frustrationstoleranz und Wahrheitsliebe es dafür braucht. Es macht mit einer Reihe von Methoden der Neuro- und Kognitionswissenschaft und Verhaltensbiologie vertraut und bricht dabei ganz nebenbei auch eine Lanze für gelebte Interdisziplinarität." (from: Frankfurter Algemeine Zeitung.)

For a podcast review see here.

Friday, November 22, 2019

Hoe universeel is muziek? [Dutch]

Een schommelende, geruststellende cadans is typerend voor slaapliedjes.
[Bron: De Volkskrant; auteur Renske Marseille]

Hoewel muziek altijd al wordt beschouwd als ‘een universele taal’ die iedereen ‘spreekt’, was het lang onduidelijk of er daadwerkelijk algemeenheden in muziek te ontdekken zijn. Een groep Amerikaanse onderzoekers analyseerde meer dan een eeuw aan antropologisch en etnomusicologisch onderzoek – een tak van de musicologie die vooral muziek in haar culturele context bestudeert. Daarnaast verzamelden ze audio-opnamen van dans-, liefdes- en slaapliedjes als ook ‘helende’ liedjes uit 315 culturen. Geen bekende nummers uit de hitlijsten, maar liedjes met zang uit (voornamelijk) kleinschalige samenlevingen. Vervolgens legden ze de nummers langs een meetlat van eigenschappen zoals accent, maatsoort, intervallen (toonsafstanden) en functie van de liedjes. Zo konden ze de nummers omzetten naar data en ze met elkaar vergelijken. Daarnaast vroegen ze maar liefst 29.357 mensen uit verschillende landen, zowel muziekexperts als leken, te beoordelen in welke van de vier categorieën de muziekbestanden hoorden. 

‘Nu blijkt dat er meer overeenkomsten dan verschillen bestaan tussen muziek uit allerlei culturen’, zegt Henkjan Honing, hoogleraar muziekcognitie aan de Universiteit van Amsterdam – niet bij de studie betrokken. ‘Blijkbaar hoef je de cultuur en muziek niet te kennen om toch te kunnen zeggen waarvoor de muziek wordt gebruikt.’ Als voorbeeld noemt hij Slaap, kindje slaap. ‘Dat wordt getypeerd door twee niveaus van accenten. Je voelt zowel een tweedelige als een driedelige maat. Daardoor ontstaat een soort schommelende, geruststellende cadans die typerend is voor slaapliedjes over de hele wereld.

Dat we die overeenkomsten herkennen in bijvoorbeeld slaapliedjes in alle culturen, komt volgens Honing door een ‘biologische aanleg’ voor muziek in de hersenen van de mens. Die zorgen ervoor dat mensen muziek op dezelfde manier produceren en beleven. ‘Dat is natuurlijk wel een beetje in tegenspraak met het wijdverspreide idee dat culturen juist uniek zijn, maar blijkbaar is de biologische aanleg voor muziek in mensen dermate vergelijkbaar dat de muziek daardoor ook uit dezelfde patronen bestaat’, aldus Honing.

Hoewel hoogleraar Honing zeer te spreken is over de nieuwe studie, plaatst hij ook een kanttekening: ‘De wetenschappers claimen dat tonaliteit waarschijnlijk óók universeel is, maar daar ben ik niet zo zeker van.’ De term ‘tonaliteit’ wordt in deze studie gebruikt voor het idee dat bepaalde tonen een centrale functie hebben en dat daaraan ook een bepaald verwachtingspatroon van de luisteraar is gekoppeld, bijvoorbeeld wanneer de laatste toon van het liedje klinkt. ‘Of het duiden van tonaliteit in muziek aangeleerd of biologisch bepaald is, blijft ook na deze analyses onduidelijk.’

Zie tevens Hendrik Spiering in het NRC en een eerdere blog.

Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … Glowacki, L. (2019). Universality and diversity in human song. Science, 366 (21 November 2019), 1–17. https://science.sciencemag.org/cgi/doi/10.1126/science.aax0868
 

Wednesday, November 20, 2019

How universal is music?


Inuit throat singers (Source: Flickr)
Tomorrow an elaborate study addressing this question will be published in Science (Mehr et al., 2019). It consists of 17 pages main text and roughly 100 pages of supplementary materials. It will give all of us a lot to read and think about. (Although the Science paper is embargoed until tomorrow afternoon, in Amsterdam we discussed the paper this week based on the pre-publication made available through PsyArXiv.)

(Source: pre-publication)
The study (i.e. pre-publication) presents several interesting findings, some as expected, others very intriguing. First of all, it provides convincing evidence that music is indeed a universal phenomenon: it can be found in virtually all societies and varies more within than between societies. Secondly, the study shows that there are often clear relations between the form of the music (its musical structure) and its function – the context in which it is used. For instance, being a lullaby or healing song. And, even more interesting, “these patterns do not consist of concrete acoustic features, such as a specific melody or rhythm, but rather of relational properties such as accent, meter, and interval structure.” (Mehr et al., 2019, p.13). Clearly, universal features of human musicality (i.e. the capacity for music; Honing et al., 2015) lead people to produce and enjoy songs with certain kinds of rhythmic or melodic patterning that naturally go with certain moods.



P.S. Many media will cover the publication in the next few days. For a coverage in Dutch see, e.g. De Volkskrant and NRC.

Honing, H., ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370(1664), 20140088. https://doi.org/10.1098/rstb.2014.0088  
Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … Glowacki, L. (2019). Universality and diversity in human song. Science, 366 (21 November 2019), 1–17. https://science.sciencemag.org/cgi/doi/10.1126/science.aax0868 
[For an interactive version of the songs described, see http://themusiclab.org/nhsplots ]

Friday, November 15, 2019

What makes us musical animals? (ISMIR 2019 Keynote @TUDelft)



[N.B. Starts around 06:00]

What makes us musical animals, a one hour keynote at ISMIR 2019:
"We are all born with a predisposition for music, a predisposition that develops spontaneously and is refined by listening to music. Nearly everyone possesses the musical skills essential to experiencing and appreciating music. Think of “relative pitch,” recognizing a melody separately from the exact pitch or tempo at which it is sung, and “beat perception,” hearing regularity in a varying rhythm. Research shows that all humans possess the trait of musicality. We are a musical species — but are we the only musical species? Can there be musical machines? In his presentation, Henkjan Honing embarks upon the quest to discover the cognitive and biological mechanisms that underpin musicality."

Sunday, November 10, 2019

Waarom zingen sommige mensen vals? [Dutch]

Beeld ThinkStock
[Bron: Volkskrant en De Morgen.]

Als je ontzettend vals zingt, kan dat meerdere oorzaken hebben. Zoals een slechte werking van je stemspieren, of een slechte ademtechniek. “Soms hebben mensen gewoon geen controle over hun stem”, zegt Henkjan Honing, hoogleraar muziekcognitie. “Met een beetje oefenen gaat dat snel beter. Zangklank wordt vaak ook beter als mensen rustig zijn. Er zijn experimenten gedaan waar ze mensen vroegen een liedje te zingen in een rustige omgeving en op straat. In een rustige studio klonk het vele malen beter: mensen hebben dan meer controle, omdat ze ontspannen zijn.”. [Dalla Bella et al., 2007]

Meestal weten mensen van zichzelf wel of ze kunnen zingen of niet. Maar aan talentenjachten zoals Idols of The Voice doen vaak amateurs mee die geen zuivere noot halen, terwijl ze er zelf van overtuigd zijn dat ze de sterren van de hemel zingen. Horen ze die valse klanken dan niet? Honing: “Er zijn mensen die tonen anders horen dan anderen, die hebben de aandoening amusia, oftewel toondoofheid. Dat komt niet zo vaak voor: eerst werd geschat dat zo’n 4 procent van de wereldbevolking het had, nu ligt die schatting op 1,5 procent.” [Peretz, 2016].
Toondoofheid is een aandoening die voortkomt uit een afwijkende verwerking van geluiden in de hersenen. De hersenen kunnen de tonen wel goed registreren, maar de frontale hersenkwab krijgt geen toegang tot de juiste toonhoogte-informatie. Onderzoekers van Harvard Medical School maakten hersenscans van twintig mensen, van wie de helft toondoof was. Uit de studie bleek dat de toondoven een minder sterke verbinding van zenuwvezels hadden tussen hun frontale en temporale hersenkwab. Die verbinding speelt een belangrijke rol bij het luisteren naar muziek en het produceren van bijpassende klanken. Bij een gebrekkige verbinding tussen die twee hersengebieden kun je zelf dus niet horen of je de juiste tonen zingt.
Toondoofheid is deels een erfelijke aandoening. “Je ziet het terugkomen in families. Maar er zijn ook gevallen van mensen die het in hun latere leven oplopen, bijvoorbeeld door hersenletsel”, zegt Honing. Een vergelijkbare aandoening is maatdoofheid. “Mensen kunnen dan ritmes niet goed horen – ze kunnen een wals of een mars nog niet uit elkaar houden. Het is een bijzondere aandoening, we hebben nu een stuk of zes mensen gevonden die het hebben. Het mechanisme is vergelijkbaar met dat van toondoofheid: hersenen kunnen wel het ritme oppikken, maar er is geen bewuste toegang tot de juiste maatinformatie in de hersenen. Het lukt mensen dan echt niet om op de maat te dansen of muziek te maken.” [Mathias et al., 2016]
Kun je iets tegen toondoofheid doen? “De toegang naar het bewustzijn van tonen is niet te repareren. Er wordt nu wel in detail uitgezocht of het effect van die gebrekkige hersenverbinding te verminderen valt via het beloningssysteem: door muziek te maken wordt er dopamine aangemaakt, en als je toondoven overhaalt om actief samen te zingen of muziek te maken, dan zou die hersenverbinding iets beter kunnen functioneren”, zegt Honing. [cf. Peretz, 2016]
Alle smeekbedes om te stoppen met zingen negeren en gewoon doorgaan dus. “Als je het leuk maakt voor toondoven, valt er een hoop te halen”, aldus Honing.

Bron: Volkskrant en De Morgen.

Dalla Bella, S., Deutsch, D., Giguère, J.-F., Peretz, I., & Deutsch, D. (2007). Singing proficiency in the general population. The Journal of the Acoustical Society of America, 121(2), 1182–1189. https://doi.org/10.1121/1.2427111

Mathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience, 10(40), 1–13. https://doi.org/10.3389/fnins.2016.00040

Peretz, I. (2016). Neurobiology of Congenital Amusia. Trends in Cognitive Sciences, 20(11), 857–867. https://doi.org/10.1016/j.tics.2016.09.002

Friday, August 23, 2019

Kan muziek een geneesmiddel vervangen?

Trouw (21 Augustus 2019)
Wie zou het niet graag aangetoond zien: simpelweg naar klassieke muziek luisteren om vervolgens een slimmer, gelukkiger of zelfs een gezonder mens te worden. Zou dat niet prachtig zijn?

Hans Jeekel, emeritus hoogleraar chirurgie aan de Erasmus Universiteit in Rotterdam en een van de auteurs van een rapport dat enkele jaren geleden door ZonMw (een stichting die advies geeft over gezondheidsonderzoek en zorginnovatie) werd uitgebracht, verwijst expliciet naar dit idee. In dat rapport, met de titel ‘Ontwikkeling en implementatie van evidence-based complementaire zorg’, wordt gerefereerd aan het ‘Mozart-effect’ als een belangrijke motivatie voor "mind-body benaderingen zoals muziektherapie". Naast homeopathie en yoga zou muziek —en dan met name klassieke muziek— een alternatief kunnen bieden op de reguliere medische zorg; een helder en wervend idee.

Volkskrant (23 augustus 2019)
Wat homeopathie betreft kunnen we natuurlijk duidelijk zijn: uitvoerig geschud water drinken kan geen kwaad. Hetzelfde geldt voor yoga, net zoals voor de meeste lichaamsbeweging: veel en regelmatig bewegen is goed voor van alles, inclusief ons brein. En voor muziek? Natuurlijk: als je blij, ontspannen, extra geconcentreerd, of juist afgeleid wordt door je lievelingsmuziek (met name zinvol tijdens een operatie of tandartsbezoek): des te beter. Maar er is natuurlijk een verschil tussen 'muziek als therapie' en 'muziek als medicijn.' Voor het eerste is er steeds meer wetenschappelijk bewijs, voor het laatste niet.

Advertorial muziekalsmedicijn.nl*
De Rotterdamse onderzoeksgroep suggereert echter in diverse media (zie o.a. Trouw en Volkskrant) dat “patiënten die tijdens een operatie onder narcose naar klassieke muziek luisteren na afloop sneller herstellen en minder pijnbehandeling nodig hebben."  Dat is om zeker twee redenen een curieuze uitspraak. Ten eerste, het zou me verbazen als alleen klassieke muziek dit voorrecht beschoren is. Er is meer mooie, en in die zin belangrijke muziek in deze wereld. Daarnaast is het gerapporteerde effect van muziek onder algehele anesthesie opmerkelijk. Dat muziek een effect kan hebben zonder dat we daar aandacht voor hebben is meerdere malen aangetoond – denk aan het effectieve gebruik van muziek in winkels en supermarkten –, maar onder algehele narcose? Dit is voor mij magie. Je zou zeggen dat dan voor de muziekbeleving cruciale hersengebieden belangrijke sensorische informatie ontbreekt (de muziek die klinkt) omdat anesthesie de informatieoverdracht tussen verschillende hersendelen reduceert.

Ik zou graag uitgelegd krijgen wat het onderliggende mechanisme is, maar daarin schiet dit type meta-onderzoek tekort; het kijkt uitsluitend naar het mogelijke effect – heeft muziek een positief effect op de beleving van pijn? – en niet naar een mogelijke verklaring – hoe komt het dat muziek soms de beleving van pijn beïnvloedt?

In enkele recente meta-studies is inmiddels aannemelijk gemaakt dat muziek een gunstige invloed kan hebben op de pijnbeleving én herstel van patiënten. Maar het blijft onduidelijk wat de reden is waarom muziek dit zo goed kan. Is het wel de muziek die het (kleine) effect veroorzaakt (gemiddeld 1 punt minder gerapporteerde pijn op een 10-punts schaal)? Of is het de stemming van de patiënt (dat muziek zo goed kan beïnvloeden), het verlaagde stressniveau, de afleiding of de bijzondere aandacht van de artsen en het verplegend personeel dat hiervan de oorzaak is? We weten het niet. Genoeg reden, lijkt me, om het een keer echt uit te zoeken voordat we muziek als (vervangend) geneesmiddel introduceren in de gezondheidszorg.

Update: Zie tevens een recent artikel in Trouw (20 augustus 2019) en de Volkskrant (23 augustus 2019). Voor aanvullende analyses zie klopdatwel.nl en kwakzalverij.nl.
N.B. Zie een eerdere versie van dit stuk hier, met een reeks updates sinds het verschijnen van het eerste persbericht van de Erasmus MC onderzoeksgroep in 2015.



* Korte reactie op enkele citaten uit de commerciële bijlage van 10 januari j.l. (zie thumbnail hierboven).

Fact check:

‘[..] Zo blijkt muziek een te hoge bloeddruk te kunnen verlagen.’
Uit een meta-studie van de Rotterdamse onderzoeksgroep (Kühlmann et al., 2016), die 10 eerder gepubliceerde randomized controlled trials (RCTs) vergeleek, blijkt dat er over het geheel genomen geen significant effect is op de bloeddruk (slechts een trend) en geen bewijs voor een causale relatie: er kon niet worden aangetoond dat muziek de oorzaak is van de bloeddrukverlagende trend. Muziek verlaagt dus niet onomstotelijk de bloeddruk (wat een medicijn wel zou doen).

‘[..] patiënten die tijdens de operatie naar muziek luisteren [hebben] significant minder pijn en angst. [..] De bewijzen die we vinden zijn overstelpend.'
Uit een recente meta-studie (Kühlmann et al., 2018), die 81 eerder gepubliceerde RCTs vergeleek, blijkt dat er een significant effect is op pijnbeleving en angst. Het effect zelf is echter maar klein: gemiddeld 1 punt minder gerapporteerde pijn op een 10-punts schaal. Daarnaast is het gerapporteerde risico-van-bias 'gemiddeld tot hoog'. ‘Overstelpend’ is wat dat betreft een onterechte karakterisering van de resultaten.

'[..] er lijkt zoiets als een Mozart-factor te bestaan.’
Het Mozart-effect is uitgebreid onderzocht in de laatste decennia. Niet de composities van W.A. Mozart maar de stemming van de luisteraar blijkt een positief (en kortstondig) effect op sommige cognitieve taken te hebben; opgewekt en alert worden door muziek maakt dat je de taak beter uitvoert. En dit is veelal de favoriete muziek van de deelnemers, i.e. niet vanzelfsprekend klassieke muziek. Sommige onderzoekers blijven echter aan de oude interpretatie vasthouden, alsof de muziek van Mozart een magische, helende werking zou hebben. Maar zoals gezegd: daar is geen enkele evidentie voor.



Sarkamo, T., Tervaniemi, M., Laitinen, S., Forsblom, A., Soinila, S., Mikkonen, M., Autti, T., Silvennoinen, H., Erkkila, J., Laine, M., Peretz, I., & Hietanen, M. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke Brain, 131 (3), 866-876 DOI: 10.1093/brain/awn013

Garza-Villarreal, E. A., Pando, V., Vuust, P., & Parsons, C. (2017). Music-induced analgesia in chronic pain conditions: a systematic review and meta-analysis. DOI: 10.1101/105148

Hole, J., Hirsch, M., Ball, E., & Meads, C. (2015). Music as an aid for postoperative recovery in adults: a systematic review and meta-analysis The Lancet DOI: 10.1016/S0140-6736(15)60169-6
 
Kühlmann, A. Y. R., Etnel, J. R. G., Roos-Hesselink, J. W., Jeekel, J., Bogers, A. J. J. C., & Takkenberg, J. J. M. (2016). Systematic review and meta-analysis of music interventions in hypertension treatment: a quest for answers. BMC Cardiovascular Disorders, 16:69 DOI: 10.1186/s12872-016-0244-0

Kühlmann, A. Y. R., De Rooij, A., Kroese, L. F., Van Dijk, M., Hunink, M. G. M., & Jeekel, J. (2018) Meta-analysis evaluating music interventions for anxiety and pain in surgery. doi: http://doi.org/10.1002/bjs.10853

Tuesday, June 25, 2019

Does musicality have a biological basis?


Participants of the Adacemy Colloquium on Musicality and Genomics, held on 20 and 21 June 2019 at the Royal Academy of Arts and Sciences (KNAW) in Amsterdam | © www.miletteraats.nl
While there is still quite some debate on the cultural and biological origins of music, there is a growing consensus that musicality has deep biological foundations, based on an accumulation of evidence for the involvement of genetic variation. Recent advances in molecular technologies provide an effective way of investigating these biological foundations. In particular, genome-wide genotyping offers a promising route to capture the polymorphic content of large phenotyped population samples. These approaches provide complementary evidence to recent knowledge gained from examining clustering in families and co-occurrence in twins of extreme levels of musical ability. However, the success of molecular genetic studies of musical ability is critically dependent on robust, objective, and reliable measures of musicality phenotypes. 

The colloquium, that was held on 20 and 21 June 2019 in Amsterdam, aimed to 1) evaluate existing measures of musicality, such as the GOLD-MSI, PROMS, AMMA, MET, Karma, Seashore, etc., and 2) discuss the opportunities to administer these standardized aptitude tests online on a large scale, especially using web-based and engaging gaming techniques. The latter will provide an important step towards 3) the design of high-powered genome-wide screens to be able to effectively analyse musical phenotypes (Gingras,Honing, Peretz, Trainor, & Fisher, 2018). Lastly, 4) a key goal was to initiate an international and truly interdisciplinary consortium aimed at identifying the genetic bases of musicality. More information can be found at www.mcg.uva.nl/musicality2019/.

Friday, May 10, 2019

Interested in becoming an SA at MCG?

www.mcg.uva.nl

The Music Cognition Group (MCG) searches for an enthusiastic and well-organized student assistant / P.A. acting as a first point of contact with people from both inside and outside MCG, starting 1 August 2019 (1 y, 0.2 fte). Deadline for applications is 15 June 2019.

N.B. You have to be registered as a bachelor or master student at the University of Amsterdam (UvA).

For more information, and detailed instructions on how to apply, see here.

Monday, April 29, 2019

In search of the origins of musicality?

This week, George Miller in the Hedgehog and the Fox investigates the origins of human musicality by looking for musical ability and perception in other animals, including rhesus macaques, zebra finches, a cockatoo named Snowball, and Ronan, a headbanging California sea lion. Miller's guide to the Evolving Animal Orchestra, is Henkjan Honing, professor of music cognition at the University of Amsterdam.



Honing’s book is not about the origins of music, but the structure of musicality, that collection of attributes that enable us to make and appreciate music, such as perception of a regular beat or the ability to imitate a melody. If such traits are based on our cognitive abilities and biological predispositions, it makes sense to look for them in other animals. All sorts of fascinating hypotheses then open up: if musicality is a sensitivity that humans share with many non-human species, it may have preceded the development of music and of language, but enabled both.

Interested in the biological basis of music and musicality?

Lecture room at KNAW.

Get inspired during a masterclass on Musicality and Genetics that will be held at the KNAW - Koninklijke Nederlandse Akademie van Wetenschappen on Wednesday 19 June 2019 in Amsterdam.

Register soon, and submit your abstract here, before May 15, 2019.

www.mcg.uva.nl/musicality2019

Thursday, April 25, 2019

Is beat perception special?

Fleur Bouwer wonders. Behaviorally, temporal expectations seem to facilitate processing of events at expected time points, such as sounds that coincide with the beat in musical rhythm. Yet, temporal expectations can develop based on different forms of structure in the environment, not just the regularity afforded by a musical beat. Because still little is known about how different types of temporal expectations are neurally implemented and affect performance, she orthogonally manipulated the periodicity and predictability of rhythmic sequences to examine the mechanisms underlying beat-based and memory-based temporal expectations. The results are now accessible via BioRxiv.

Tuesday, April 23, 2019

Since when is music a topic for biologists?

mitpress.mit.edu

Below the opening of a recent book review of The Evolving Animal Orchestra in Current Biology by Andrea Ravignani:
"Music is traditionally regarded as ‘intellectual property’ of the arts, humanities, and perhaps social sciences. Since when is music a topic for biologists? While Darwin and other naturalists had noticed crossspecies similarities to human musical behaviors, realizing the importance of musicality has contributed enormously to linking music and biology. In fact, while music is more of a cultural product, musicality denotes the neurobiological predispositions an organism uses to produce and process music. Henkjan Honing’s new book The Evolving Animal Orchestra: In Search of What Makes Us Musical is not about animals listening to human music or the like. It is a journey through cross-species musicality — that is, the neurobiology underlying musical behaviors in humans and other animals"
See the full review here.

Thursday, April 04, 2019

Can all animals keep the beat?

Paula Bronstein/Getty Images


Darwin believed in the musicality of animals. The truth may be more interesting, says Simon Ings in the NewScientist of 3 April 2019:
"THE perception, if not the enjoyment, of musical cadences and of rhythm," wrote Darwin in his 1871 book The Descent of Man, "is probably common to all animals."
Henkjan Honing has tested this eminently reasonable idea, and in his book, The Evolving Animal Orchestra, he reports back. He details his disappointment, frustration and downright failure with such wit, humility and a love of the chase that any young person reading it will surely want to run away to become a cognitive scientist.
No culture has yet been found that doesn't have music, and all music shares certain universal characteristics: melodies composed of seven or fewer discrete pitches; a regular beat; a limited sequence of rhythmic patterns. All this would suggest a biological basis for musicality.
A bird flies with regular beats of its wings. Animals walk with a particular rhythm. So you might expect beat perception to be present in everything that doesn't want to falter when moving. But it isn't. Honing describes experiments that demonstrate conclusively that we are the only primates with a sense of rhythm, possibly deriving from advanced beat perception.
Only strongly social animals, he writes, from songbirds and parrots to elephants and humans, have beat perception. What if musicality was acquired by all prosocial species through a process of convergent evolution? Like some other cognitive scientists, Honing now wonders whether language might derive from music, in a similar way to how reading uses much older neural structures that recognise contrast and sharp corners.
Honing must now test this exciting hypothesis. And if The Evolving Animal Orchestra is how he responds to disappointment, I can't wait to see what he makes of success." – Simon Ings (NewScientist).

Thursday, March 28, 2019

Interested in rhythm and synchrony?


Preliminary announcement:

From 29 July 2019 through 2 August 2019 a workshop entitled Synchrony and Rhythmic Interaction: From Neurons to Ecology will be organized at the Lorentz Center, NL. It will bring together, for the first time, scholars from several disciplines aiming to exchange insights on synchrony and rhythmic interaction, from the neural level to ecology.

See for more information the Lorentz Center website.

Monday, March 18, 2019

Interested in the biology of musicality?


This June in Amsterdam, leading experts from diverse fields meet to explore how advances in genomics can give insights into the biology of musicality. The KNAW Colloquium is preceded by a Masterclass (June 19), now open for applications. Spread the word!

Young researchers, PhD-students, and master students in the fields of music cognition, psychology, and genetics are cordially invited to join our Master Class on 'Musicality and Genomics': See http://www.mcg.uva.nl/musicality2019/masterclass.html.

What makes music special to us?

We are all born with a predisposition for music, a predisposition that develops spontaneously and is refined by listening to music. Nearly everyone possesses the musical skills essential to experiencing and appreciating music. Think of “relative pitch,”recognizing a melody separately from the exact pitch or tempo at which it is sung, and “beat perception,”hearing regularity in a varying rhythm. Even human newborns turn out to be sensitive to intonation or melody, rhythm, and the dynamics of the noise in their surroundings. Everything suggests that human biology is already primed for music at birth with respect to both the perception and enjoyment of listening.

Human musicality is clearly special. Musicality being a set of natural, spontaneously developing traits based on, or constrained by, our cognitive abilities (attention, memory, expectation) and our biological predisposition. But what makes it special? Is it because we appear to be the only animals with such a vast musical repertoire? Is our musical predisposition unique, like our linguistic ability? Or is musicality something with a long evolutionary history that we share with other animals?

Read the full article in Nautilus Magazine of March 14, 2019.


Saturday, March 09, 2019

A look behind the scenes?

[Fragment from Q&A on The Evolving Animal Orchestra by science journalist Rachel Becker of The Verge]

"In June 2014, music cognition professor Henkjan Honing witnessed a strange sight: a sea lion named Ronan headbanging to a beat. When the beat sped up or slowed down, so did the bops of Ronan’s head. And when “Boogie Wonderland” by Earth, Wind & Fire started playing over the speakers, Ronan kept perfect time.

Moving with a beat may sound trivial to us humans. But Ronan’s rhythm, first published by researchers at the University of Santa Cruz in 2013, is a major clue in the quest to understand why we have music, and how it became such an important cornerstone of human culture. That’s the quest Honing, a professor at the University of Amsterdam, sets for himself in his new book, The Evolving Animal Orchestra, translated by Sherry Macdonald and published this week by MIT Press. 

The book follows Honing around the world — from Mexico, to Japan, to Santa Cruz, and back to the Netherlands. He meets animals with rhythm, and a man with none. Throughout, he grapples with the central question: why can humans perceive and appreciate music — and can other animals do it, too?" 

Read the full interview here.

Monday, March 04, 2019

What is playing music for rhesus monkeys teaching us about our own brains?


Adapted from "The Evolving Animal Orchestra: In Search of What Makes Us Musical", by Dr. Henkjan Honing, translated by Sherry Macdonald, The MIT PRESS, 2019.
Fragment from publication in salon.com from 4 March 2019:

"As a music cognition researcher interested in whether primates conceive of music, I was curious to understand more about the significance of sound for rhesus macaques in their natural habitat. Although they are confronted with sounds on a daily basis in the laboratory, it struck me as important to examine the role of sound and musicality in their life in the wild. Not all primate researchers agree, but it appears that, generally speaking, most Old World primates show little interest in sound, let alone music. Of all their senses, seeing and smelling have much more important functions. Numerous studies of rhesus macaques indicate that their limited repertoire of noises serves mainly to signal either a threatening or a submissive stance. The noises they make play a significant role in determining and maintaining hierarchy in the group. Stare straight into the eyes of a rhesus macaque, as I did with Capi, and it will instantly feel threatened. The animal will grimace, bare its teeth, and start growling. The emotions of rhesus macaques can be read easily from their faces (by humans and rhesus macaques, that is), and their vocalizations add little to this picture."

For the complete article, see publication in salon.com.

Friday, March 01, 2019

Interested in doing a Master in Amsterdam?


Application deadline for our one-year English-language MA programme in music studies is extended. You can apply until Sunday 3 March 2019 23:59 hours CET. Check it out now at www.musicstudies.nl and spread the word!

N.B. For Dutch/EU students the deadline is 15 May.

Wednesday, January 30, 2019

Do newborns have a language bias?

Figure from the discussed paper.
Yesterday an intriguing study appeared in Developmental Science of the group of Jacques Mehler†. The research is novel in that it provides evidence for the sensitivity in one or two day old newborns for the statistical structure and prosody of speech. What is not novel is that it is a case of labeling a phenomenon as linguistic, while it could have been labelled otherwise – something I have called earlier the ‘language bias’: the linguist’s understandable enthusiasm to interpret many of nature’s phenomena as linguistic (cf. Honing, 2011).

With regard to prosody there are equally good, if not better, reasons for referring to the sensitivity to patterns of intonation (melody), stress (dynamics), and rhythm as “musical prosody” or musicality. It is no mere coincidence that these patterns also form the building blocks of music. In human development, this musicality is already active around three months before birth. Not only can infants recognize their mother’s voice and distinguish it from other voices, but they can also remember melodies and, after birth, distinguish them from other melodies that they have not heard before. Both the perception and memory of melody are already functional during pregnancy. Unborn babies appear to listen mostly to the sounds as a whole, with special attention to the intonation contours, rhythmic patterns, and dynamic development of the sound. Only much later, when the babies are about six months old, does this musical prosody begin to play a role in what could be called the beginning of language, such as the recognition of word boundaries (see citations in the introduction of the article in Developmental Science). During this phase of development, small tone curves, stress, and specific rhythms help infants to learn their mother tongue (fragment from Honing, 2019:76-77).

In part the observations made in the new study sharpen  earlier interpretations, especially those with regard to the sensitivity of the statistical structure of speech ((Experiment 1; something that was shown to be difficult to replicate after the first studies of, e.g., Marcus et al.). But with regard to prosody (Experiment 2) there are still other interpretations possible. The big challenge (and a nice one!) is to design and perform an experiment that can disentangle both interpretations. It’s on the research agenda!


Fló, A., Brusini, P., Macagno, F., Nespor, M., Mehler, J., & Ferry, A. L. (2019). Newborns are sensitive to multiple cues for word segmentation in continuous speech. Developmental Science, e12802.doi:10.1111/desc.12802

Honing, H. (2011). The Illiterate Listener: On Music Cognition, Musicality and Methodology. Amsterdam University Press.

Honing, H. (2019). The Evolving Animal Orchestra. In Search of What Makes Us Musical. Cambridge, Mass.: The MIT Press.

Hebben pasgeboren baby’s een taal-bias? [Dutch]

Figure 1 from the publication discussed.
Gisteren verscheen er een intrigerend onderzoek in Developmental Science van de groep van Jacques Mehler (LCDL). Het onderzoek is nieuw in de zin dat voor het eerst wordt aangetoond dat pasgeboren baby’s  – een, twee dagen oud –, gevoelig zijn voor de prosodie en statistische structuur van de moedertaal. Wat niet nieuw is dat taalkundigen een eigenschap die net zo goed ‘muzikaal’ genoemd kan worden geclaimd wordt als een talige eigenschap.

Wat prosodie betreft zijn er even goede, zo niet betere redenen te bedenken om deze ontvankelijkheid voor intonatiepatronen (dan wel melodie), klemtoon (dan wel dynamiek) en ritme ‘muzikale prosodie’ of muzikaliteit te noemen. Het zijn niet toevallig ook de bouwstenen van muziek. In de ontwikkeling van een mens is deze muzikaliteit al actief zo’n drie maanden vóór de geboorte. In de baarmoeder kunnen baby’s niet alleen de stem van hun moeder herkennen en onderscheiden van andere stemgeluiden, ze kunnen ook melodieën onthouden en die na de geboorte onderscheiden van melodieën die ze nog niet eerder gehoord hebben. Zowel de waarneming van als het geheugen voor melodie zijn tijdens de zwangerschap al functioneel. Baby’s lijken vooral naar de klanken als geheel te luisteren, met aandacht voor de intonatiecontour (melodie), ritmische patronen en het dynamisch verloop van het geluid. Pas veel later in hun ontwikkeling, als zij zo’n zes maanden oud zijn, gaat deze muzikale prosodie een rol spelen in wat je het begin van taal zou kunnen noemen, zoals het herkennen van woordgrenzen (zie de citaties in de introductie van he artikel in Developmental Science). In die fase van de ontwikkeling helpen kleine toonbuigingen, klemtoon en specifieke ritmes baby’s de moedertaal te leren (citaat uit: Honing, 2018:130-131).

Voor een deel worden deze observaties nu aangescherpt, met name wat betreft de detecteerbaarheid statistische structuur van spraak geluiden (experiment 1). Maar wat de prosodie (experiment 2) betreft is de onderste steen nog niet boven. De grote uitdaging is nu om een experiment te ontwerpen dat deze twee interpretaties uit elkaar kan houden. Binnenkort meer :-)

Fló, A., Brusini, P., Macagno, F., Nespor, M., Mehler, J., & Ferry, A. L. (2019). Newborns are sensitive to multiple cues for word segmentation in continuous speech. Developmental Science, e12802. doi: 10.1111/desc.12802.

Honing, H. (2018). Aap slaat maat. Op zoek naar de oorsprong van muzikaliteit. Amsterdam: Nieuw Amsterdam.

Wednesday, January 16, 2019

Interested in doing a PhD on a topic related to Music Cognition?


The Institute for Logic, Language and Computation (ILLC) at the University of Amsterdam (UvA) currently has a PhD position available at the Faculty of Science starting on 1 September 2019 (or as soon after that as possible). Applications are now invited from excellent candidates wishing to conduct research in an area within ILLC (i.e. mathematics, artificial intelligence, linguistics, philosophy, or music cognition) that fits naturally in the Faculty of Science. See website for more information.

N.B. The deadline for applications is 20 January 2019.

Monday, January 07, 2019

Want to know how music works?

mcg.uva.nl/howmusicworks
The University of Amsterdam offers two Master-level courses grouped under the name How Music Works. Several members of the Music Cognition Group contribute their various backgrounds to these courses, ranging from music theory and cognitive science to psychology and computer science. Next to outlining the theoretical underpinnings and presenting an up-to-date view of the field of music cognition, it provides practical hands-on classes presenting a variety of computational techniques and experimental designs.

See here for more information on all courses related to the Music Cognition Group (MCG@ILLC).

Interested in doing a PhD in the Humanities on a topic related to Music Cognition?


The aim of the NWO PhDs in the Humanities funding instrument is to increase the number of young talented researchers in the humanities, and to facilitate their progression on the academic career ladder. Deadline for proposals is 7 March 2019.

N.B. In January 2019 more information about the pre-selection procedure of the ILLC (UvA) will be announced. For now, see the link mentioned at the MCG@ILLC website for additional information or contact one of the MCG members via the p.a. of MCG <pa@musiccogntion.nl> to discuss possible topics. For logistic questions feel free to e-mail the ILLC office <phd-illc@uva.nl>.