Monday, November 24, 2025

Musical Animals: Are we? Can there be?

On November 20, 2025, the Royal Palace Amsterdam hosted the symposium “Music and Mind, Music as Medicine,” part of the ongoing series organized by the Amsterdam Royal Palace Foundation. The event brought together leading voices reflecting on how music shapes thought, health, and human experience.

I had the honour to present the opening keynote, “Musical Animals: Are We? Can There Be?”, about musicality as a natural, biological capacity. I explored the question of whether humans are truly unique in perceiving rhythm and melody—or whether other species share aspects of what we call “music.”

You can listen to the keynote here: Download audio file [or go to Royal Palace website].

Prof. Em. Daniel J. Levitin followed with insights from neuroscience and psychology, connecting music to memory, emotion, and healing. His perspective added valuable depth to the symposium’s theme of music as medicine.

The day was further enriched by a powerful performance from Dame Evelyn Glennie, whose artistry and reflections on listening brought the scientific discussions into vivid, lived experience.

Special thanks were due to Tania Kross and Prof. Ineke Sluiter, who co-chaired the symposium and guided the conversations with clarity and warmth.

Altogether, the event offered a meaningful window into how music—whether studied in labs, performed onstage, or felt in our bodies—continues to inspire new questions and connections.

All recordings can be found at the wesbite of the Royal Palace.

Friday, November 07, 2025

Gaat muzikaliteit aan muziek én taal vooraf? [Dutch]

Foto: Iris Vette
Hoe het brein van onze verre voorouders eruitzag, is niet meer na te gaan. Toch is er via een omweg misschien iets te zeggen over het ontstaan van taal, en de rol die muziek daarbij speelde.

Veel taalkundigen geloven —vreemd genoeg— dat onze liefde voor muziek meelift op ons taalvermogen (zie bijvoorbeeld NRC uit 2016 en Steven Pinker's invloedrijke boek How the mind works). Maar zou het niet, en even waarschijnlijk, precies andersom kunnen zijn?

Voor een overzicht van de recente ontwikkelingen op het gebied van de neurowetenschappen van taal en muziek, zie bijv. Peretz et al. (2015), Norman-Haignere et al. (2015) en de video hieronder: een registratie van de lezing Voor de muziek uit die ik in 2016 gaf op het tweejaarlijkse congres Onze Taal in het Chassé Theater in Breda.

N.B. Een samenvatting van de tekst verscheen in het tijdschrift Onze Taal. De integrale tekst verscheen in het interdisciplinaire tijdschrift Blind.



Norman-Haignere, S., Kanwisher, N., & McDermott, J. (2015). Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition Neuron, 88 (6), 1281-1296 DOI: 10.1016/j.neuron.2015.11.035

Peretz, I., Vuvan, D., Lagrois, M., & Armony, J. (2015). Neural overlap in processing music and speech Philosophical Transactions of the Royal Society B: Biological Sciences, 370 (1664), 20140090-20140090 DOI: 10.1098/rstb.2014.0090

Thursday, November 06, 2025

Can birds imitate Artoo-Detoo?

The research summarized in an infographic (Dam et al., 2025).

When you think of birds imitating sounds, parrots and starlings might come to mind. They’re famous for copying human speech, car alarms, and even ringtone melodies. But what happens when you challenge them with something really complex, like the electronic beeps and boops of R2-D2, the beloved Star Wars droid? Researchers from the University of Amsterdam and Leiden University put nine species of parrots and European starlings to the test.

Starlings versus parrots

It turns out that starlings had the upper hand when it came to mimicking the more complex 'multiphonic sounds. Thanks to the unique morphology of their vocal organ, the syrinx, which has two sound sources. This allows starlings to reproduce multiple tones at once—perfect for R2-D2-style chatter.

Parrots, on the other hand, are limited to producing one tone at a time (just like humans). Still, they held their own when it came to the simpler “monophonic” beeps of R2-D2. Interestingly, it weren’t the famously chatty African grey parrots or amazon parrots that did best, but the smaller species, like budgerigars and cockatiels. These little birds, often thought of as less impressive vocalists, actually outperformed the larger species in this specific task, likely by using different strategies to imitate sounds.

Even sounds from science fiction can teach us something real

The researchers call their study a fun but powerful window into how anatomy, like the structure of a bird’s vocal organ, can shape the limits and possibilities of their vocal skills. It is the first time that so many different species all produced the same complex sounds, which finally allows for a direct comparison. This shows that even sounds from science fiction can teach us something real about the evolution of communication and learning in animals.

And here’s the cool part: much of the sound data came from pet owners and bird lovers participating in citizen science through the Bird Singalong Project. With their help, the researchers were able to gather a richer, more diverse collection of bird sounds than ever before, proving that science doesn't always have to happen in a lab.

Reference

Dam, N.C.P., Honing, H. & M.J. Spierings (2025). What imitating an iconic robot reveals on allospecific vocal imitation in parrots and starlings. Scientific Reports, 15, 36816. https://doi.org/10.1038/s41598-025-23444-7