One way of categorizing the sensitivities of animals to the building blocks of language and music is to group these sensitivities along the frequency/spectral and temporal dimensions of sound. Although speech and music share many acoustic features, music appears to take advantage of a different set of acoustic features than speech. In humans the frequency dimension is central to music/melody perception, while for understanding speech the temporal dimension appears to be most fundamental (Albouy et al., 2020; Shannon et al., 1995). With respect to the frequency dimension of speech, humans attend primarily to the spectral structure (which enables the distinction between
the different vowels and consonants), while for music the attention appears to be less on a spectral quality (e.g., the sound of a guitar versus that of a flute), but instead on the melodic and rhythmic patterns. As such, it might well be that humans are an exception in that they can interpret the same sound signal in (at least) two distinct ways: as speech or as music (cf. speech-to-song illusion). In other animals such distinction is not observed (as yet). In humans, melody and speech are processed along specific and distinct neural pathways (Albouy et al., 2020; Norman-Haignere et al., 2022) and it could be that brain networks that support musicality are partly recycled for language (Peretz et al., 2018). This could imply that both language and music share one precursor. In fact, it is one possible route to test the Darwin-inspired conjecture that musicality precedes music and language (Honing, 2021). In a recent preprint (ten Cate & Honing, 2022) we discuss the potential components of such a precursor.
Albouy, P., Benjamin1, L., Morillon, B., & Zatorre, R. J. (2020). Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science, 367(6481), 1043–1047. https://doi.org/10.1126/science.aaz3468.
Honing, H. (2021). Unravelling the origins of musicality: Beyond music as an epiphenomenon of language. Behavioral and Brain Sciences, 44(E78), 66–69. https://doi.org/10.1017/S0140525X20001211.
Norman-Haignere, S. V., Feather, J., Boebinger, D., Brunner, P., Ritaccio, A., McDermott, J. H., … Kanwisher, N. (2022). A neural population selective for song in human auditory cortex. Current Biology, 1–15. https://doi.org/10.1016/j.cub.2022.01.069.
Peretz, I., Vuvan, D. T., Armony, J. L., Lagrois, M.-É., & Armony, J. L. (2018). Neural overlap in processing music and speech. In H. Honing (Ed.), The Origins of Musicality (Vol. 370, pp. 205–220). Cambridge, Mass.: The MIT Press. http://dx.doi.org/10.1098/rstb.2014.0090.
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270(5234), 303–304. https://doi.org/10.1126/science.270.5234.303
Ten Cate, C., & Honing, H. (2022). Precursors of music and language in animals. PsyArXiv Preprint. Retrieved from psyarxiv.com/4zxtr.
No comments:
Post a Comment